Terminal Ballistics & How to Choose the Right Ammunition (Pt. 2)

by
posted on August 7, 2018
bestammo.jpg
Last week, we talked about two factors of terminal ballistics that help you determine what the proper ammunition is for your purposes: striking energy and striking velocity. This week, we're going to talk about three more factors of terminal ballistics: penetration, bullet expansion and weight retention.

Penetration
To fulfill its function, a bullet must penetrate the target after impact. The amount of bullet penetration required depends upon the nature of the target. Target penetratin depends on an intricate interplay of the following features: 
  • bullet construction
  • bullet diameter, weight and sectional density
  • striking velocity
  • striking energy
  • target structure
  • obstacles in front of the target
  • angle of entry
  • bullet stability

In general, the greater a bullet's sectional density, the farther it will penetrate. Sectional density is a measure that relates bullet mass to its cross-sectional area. It is normally expressed as a three-digit number. The heavier a bullet is for its diameter, the higher its sectional density. Despite many efforts to develop an experimental method to predict bullet penetration for hunting and self-defense, in real-life situations penetration is only approximately predictable.

Bullet Expansion
Bullet expansion is normally desired for optimal terminal performance in hunting and defensive situations. Most modern bullet jackets are pre-scored and tapered, which guides and controls expansion. A bullet that expands inside the target has more frontal area to better transmit its energy to the target while creating a larger permanent wound cavity. Expansion decreases the projectile's sectional density to control penetration; enhance energy transfer; increase the size of the permanent wound cavity; and minimize the likelihood of bullet pass-through. Different levels and rates of expansion are required in different situations. These rates and levels of expansion are accomplished through bullet design and construction features such as: 
  • Core hardness and shape: core/jacket bonding
  • Point configuration: soft point (spitzer, round-nose, flat-nose), hollowpoint, polymerptip, metal tip, capped
  • Jacket: material, hardness, thickness, taper, length, shape, pre-scored jackets
  • Base shape: flat, boattail, hollow or cupped

Designing a soft-point bullet to expand is fairly easy, and such bullets will reliably expand over a wide range of impact velocities. On the other hand, expanding hollowpoint bullets are more difficult to design for reliable expansion. The range of impact velocities over which a hollowpoint bullet will expand is considerably narrower than soft-point bullets. Hollowpoint bullets striking at velocities that are below their expansion threshold behave like full-metal-jacket bullets, i.e., they do not expand at all.

Weight Retention
Ideally, a properly designed expanding, jacketed bullet should retain 100 percent of its original weight after expansion. However, in the real world this is difficult to achieve. The amount of retained weight depends upon:
  • bullet design
  • construction materials and methods
  • intended use of the bullet

Because of their construction, premium-quality bullets can be designed to perform well over a wider range of striking velocities than standard bullets. For this reason, they are a popular choice for high-intensity magnum calibers. Many hunters select premium-quality bullets for hunting under difficult conditions, at very laong ranges or for hunting large, heavy game.

For hunting dangerous game, non-expanding "solid" bullets are often used because they penetrate deeply and reliably. Such bullets are made with steel-reinforced jackets and hard-lead or solid-copper cores to prevent deformation even if they hit heavy bone. Standard-quality bullets are designed to perform best in non-magnum calibers on medium game at lower muzzle velocities. For this reason, they do not offer the flexibility of premium bullets, but they are substantially less expensive and may be perfectly suitable to the task at hand. Most hunters find this adequate for hunting thin-skinned, medium game such as deer and antelope at normal ranges and conditions. Varmint bullets are designed to disintegrate shortly after penetration in order to transfer all kinetic energy to the target as quickly as possible. This explosive expansion normally results in a clean, instantaneous kill leaving only small fragments of the bullet. 

Stay tuned for next week, when we'll cover three more factors that affect terminal ballistics.


Latest

Daniel Defense Sherp Giveaway
Daniel Defense Sherp Giveaway

How to Win Guns & Gear at the NRA Annual Meetings

The short answer is "show up and walk around the exhibit hall," and the longer answer is below (yes, you still want to read it).

Show Ponies! 3 Annual Meetings Booths with Crazy Custom Colts

Calling all Colt fans: These three booths have the tricked-out Colt guns of your dreams.

First Impressions: Dead Air X Ruger RXD Series Suppressors

Two legendary manufacturers team up to create an all-new line of suppressors.

First Impressions: Taurus 58 Pistol

Smart design, modern materials, and high capacity come together for an ideal option for EDC (Everyday Carry) and range use alike.

Caught in a Staredown: What to Do

Uh-oh! The animal you're hunting saw you ... but you might still have a chance if you follow these tips.

First Impressions: Henry Repeating Arms HUSH Series Rifles

Fresh out of Henry's Special Products Division, these rifles are optimized for suppressors.

Interests



Get the best of NRA Family delivered to your inbox.